微针系统在肿瘤疫苗中的研究进展

李楠, 张娜, 刘永军

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (15) : 1345-1348.

PDF(1018 KB)
PDF(1018 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (15) : 1345-1348. DOI: 10.11669/cpj.2023.15.001
综述

微针系统在肿瘤疫苗中的研究进展

  • 李楠, 张娜*, 刘永军*
作者信息 +

Advances of Microneedle System in Tumor Vaccines

  • LI Nan, ZHANG Na*, LIU Yong-jun*
Author information +
文章历史 +

摘要

肿瘤疫苗作为一种新型免疫治疗策略在临床肿瘤治疗中具有良好的应用前景,其通常使用肌肉或皮下注射发挥肿瘤免疫效应。微针作为一种新兴经皮给药技术,可以穿过皮肤角质层将肿瘤抗原递送至免疫细胞丰富的活性表皮和真皮层,具有给药方便和患者依从性高等优点,在肿瘤疫苗研究中极具潜力。基于此,笔者针对微针系统及其递送肿瘤抗原的机制进行概述,总结微针系统在肿瘤疫苗中的研究进展,为肿瘤抗原递送途径的选择提供新参考,推动微针系统的应用。

Abstract

As a novel immunotherapeutic strategy, tumor vaccines have a good application prospect in clinical cancer therapy, which are often intramuscularly or subcutaneously injected into the body and exerts immune effects. As an emerging transdermal drug delivery technology, microneedles can deliver tumor vaccines through the stratum corneum of the skin to the active epidermis and dermis, which are rich in immune cells. With the advantages of convenient administration and high patient compliance, it is a research hotspot of transdermal drug delivery system at present. In this paper, the microneedle system, the mechanism of delivering tumor antigens and its research progress in tumor vaccines are summarized, in order to provide a new way of tumor vaccines delivery and promote the applications of microneedle system.

关键词

微针 / 肿瘤疫苗 / 经皮递送 / 免疫治疗

Key words

microneedle system / tumor vaccine / transdermal delivery / immunotherapy

引用本文

导出引用
李楠, 张娜, 刘永军. 微针系统在肿瘤疫苗中的研究进展[J]. 中国药学杂志, 2023, 58(15): 1345-1348 https://doi.org/10.11669/cpj.2023.15.001
LI Nan, ZHANG Na, LIU Yong-jun. Advances of Microneedle System in Tumor Vaccines[J]. Chinese Pharmaceutical Journal, 2023, 58(15): 1345-1348 https://doi.org/10.11669/cpj.2023.15.001
中图分类号: R944   

参考文献

[1] LIU M, GUO F. Recent updates on cancer immunotherapy[J]. Precis Clin Med, 2018, 1(2):65-74.
[2] IGARASHI Y, SASADA T. Cancer vaccines: toward the next breakthrough in cancer immunotherapy [J]. J Immunol Res, 2020: 5825401. Doi: 10.1016/j.ebiom.2020.102975.
[3] HAN D, XU Y, ZHAO X, et al. A novel human anti-TIGIT monoclonal antibody with excellent function in eliciting NK cell-mediated antitumor immunity[J]. Biochem Biophys Res Commun, 2021, 534:134-140.
[4] RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382):1350-1355.
[5] XIE G, DONG H, LIANG Y, et al. CAR-NK cells: A promising cellular immunotherapy for cancer [J]. EBio Med, 2020, 59: 102975. Doi: 10.1016/j.ebiom.2020.102975.
[6] LI J, ZENG M, SHAN H, et al. Microneedle patches as drug and vaccine delivery platform [J]. Curr Med Chem, 2017, 24(22): 2413-2422.
[7] LU Y, CHENG Z Q, JIN Y, et al. Research updates on microneedle-based transdermal drug delivery systems[J]. Chin Pharm J(中国药学杂志), 2018, 53(12):945-950.
[8] HENRY S, MCALLISTER D V, ALLEN M G, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery [J]. J Pharm Sci, 1999, 88(9): 948. Doi: 10.1021/js990783q.
[9] LI D, HU D, XU H, et al. Progress and perspective of microneedle system for anti-cancer drug delivery [J]. Biomaterials, 2021, 264: 120410. Doi: 10.1016/j.biomaterials.2020.120410.
[10] RUAN S, ZHANG Y, FENG N. Microneedle-mediated transdermal nanodelivery systems: a review. [J]. Biomater Sci, 2021, 9(24): 8065-8089.
[11] YANG J, LIU X, FU Y, et al. Recent advances of microneedles for biomedical applications: drug delivery and beyond [J]. Acta Pharm Sin B(药学学报英文), 2019, 9(3): 469-483.
[12] SHENG T, LUO B, ZHANG W, et al. Microneedle-mediated vaccination: innovation and translation[J]. Adv Drug Deliv Rev, 2021, 179: 113919. Doi: 10.1016/j.addr.2021.113919.
[13] ZHAO Z, UKIDVE A, DASGUPTA A, et al. Transdermal immunomodulation: principles, advances and perspectives [J]. Adv Drug Deliv Rev, 2018, 127: 3-19.
[14] GUO Q, WANG C, ZHANG Q, et al. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of HBc VLPs based cancer vaccine [J]. Appl Mater Today, 2021, 24: 101110. Doi:10.1016/j.apmt.2021.101110.
[15] YE Y, WANG C, ZHANG X, et al. A melanin-mediated cancer immunotherapy patch[J]. Sci Immunol, 2017, 2(17): 5692. Doi: 10.1126/sciimmunol.aan5692.
[16] BOONE C E, WANG C, LOPEZ-RAMIREZ M A, et al. Active microneedle administration of plant virus nanoparticles for cancer in situ vaccination improves immunotherapeutic efficacy [J]. ACS Appl Nano Mater, 2020, 3(8): 8037-8051.
[17] ZENG Q, GAMMON J M, TOSTANOSKI L H, et al. In vivo expansion of melanoma-specific T cells using microneedle arrays coated with immune-polyelectrolyte multilayers[J]. ACS Biomater Sci Eng, 2017, 3(2): 195-205.
[18] DUONG H T T, YIN Y, THAMBI T, et al. Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy [J]. Biomaterials, 2018, 185: 13-24.
[19] PERCIANI C T, LIU L Y, WOOD L, et al. Enhancing immunity with nanomedicine: employing nanoparticles to harness the immune system [J]. ACS Nano, 2021, 15(1): 7-20
[20] LIAO J F, LEE J C, LIN C K, et al. Self-assembly DNA polyplex vaccine inside dissolving microneedles for high-potency intradermal vaccination [J]. Theranostics, 2017, 7(10): 2593-2605.
[21] DUONG H T T, YIN Y, THAMBI T, et al. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy[J]. J Mater Chem B, 2020, 8(6): 1171-1181.
[22] NI Q, ZHANG F, LIU Y, et al. A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer[J]. Sci Adv, 2020, 6(12): eaaw6071. Doi:10.1126/sciadv.aaw6071.
[23] LI Z, HE Y, DENG L, et al. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice[J]. J Mater Chem B, 2020, 8(2): 216-225.
[24] CRUZ F M, COLBERT J D, MERINO E, et al. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules[J]. Annu Rev Immunol, 2017, 35: 149-176.
[25] VAN DER MAADEN K, HEUTS J, CAMPS M, et al. Hollow microneedle-mediated micro-injections of a liposomal HPV E743-63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses [J]. J Controlled Release, 2018, 269: 347-354.
[26] ZHAO L, SETH A, WIBOWO N, et al. Nanoparticle vaccines[J]. Vaccine, 2014, 32(3): 327-337.
[27] ZHOU Z Z, PANG J H, WU X J, et al. Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle[J]. Nano Res, 2020, 13(6): 1509-1518.
[28] SABADO R L, BALAN S, BHARDWAJ N. Dendritic cell-based immunotherapy [J]. Cell Res, 2017, 27(1): 74-95.
[29] SANTOS PM, BUTTERFIELD LH. Dendritic cell-based cancer vaccines[J]. J Immunol, 2018, 200(2): 443-449.
[30] CHANG H, CHEW S W T, ZHENG M, et al. Cryomicroneedles for transdermal cell delivery [J]. Nat Biomed Eng, 2021, 5(9): 1008-1018.
[31] SHUBHMITA B, KAUSHALKUMAR D, VENKATA V K. Microneedles in the clinic[J]. J Controlled Release, 2017, 260:164-182
[32] COLE G, ALI A A, MCERLEAN E, et al. DNA vaccination via RALA nanoparticles in a microneedle delivery system induces a potent immune response against the endogenous prostate cancer stem cell antigen [J]. Acta Biomater, 2019, 96:480-490.
[33] GALA R P, ZAMAN R U, D'SOUZA M J, et al. Novel whole-cell inactivated neisseria gonorrhoeae microparticles as vaccine formulation in microneedle-based transdermal immunization[J]. Vaccines, 2018, 6(3):60. Doi:10.3390/vaccines6030060.
[34] PARK W, SEONG K Y, HAN H H, et al. Dissolving microneedles delivering cancer cell membrane coated nanoparticles for cancer immunotherapy [J]. RSC Adv, 2021, 11(17): 10393-10399.

基金

国家自然科学基金项目资助(82173756);山东大学青年学者未来计划资助(YSPSDU, 2017WLJH40)
PDF(1018 KB)

Accesses

Citation

Detail

段落导航
相关文章

/